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A new technique for plasma diagnostics is presented which employs the

ABSIRACT

nonlinear properties of the plasma medium,

The situation is considered in which two electromagnetic f£ields with
different frequencies, oy, and oy, are externally applied to a plasma. Interest
is then concentrated on the current densities associated with the beat frequencies,
Wy, +uw,., One expects, on the basis of physical reasoning, that a resonance effect
will be established if one chooses one of the beat frequencies equal to a
characteristic frequency of the plasma.

Detailed calculations are carried out for the cases of wave propagation
parallel and perpendicular to a static magnetic field., The most promising results,
for the purposes of plasma diagnostics, are found in the case of perpendicular
propagation, where one chooses either

0 =W =W
or

W =a =20
where we is the electron cyclotron frequency, and measures currents flowing
perpendicular to the static magnetic field. In these cases it is found that the
currents associated with the difference frequency, wy, = uy, have measurable
values and are strongly dependent on the values of the electron temperature
perpendicular to the static magnetic field.

Measured values of these currents should, therefore, yield values for this
electron temperature. These currents are independent of the electron temperature
parallel to the static magnetic field. If the work presented herein is extended
to include wave propagation directions at an arbitrary angle with respect to the
static magnetic field, the corresponding currents will depend on the longitudinal
as well as the transverse temperature. It is hoped that the longitudinal

)
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temperature can also be measured in this way. This extension 1s straightforward
in principle, involving only more tedious calculatioms.

The diagnostic method proposed in this work should have some advantages over
present techniques. This method should enable one to measure anisotropic temperae~
ture effects, which 18 beyond the capability of present probe techniques.

Since there are two resonance conditions in the case discussed above, a

frequency sweep technique is suggested for measurements of electron temperatures

in the ionosphere. a Mp/
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1.  INIRGPUCTION
In this report we discuss a new method for determining plasma properties,

with particular emphasis on the electron demsity and electron temperature.

Before proceeding with the development of the theoretical basis of the new
method, however, we first give a brief discussion of present diagnostic techniques
revealing in the process the motivation for the present investigationm.

There are, at present, several methods in use for making measurements on low
density plasmas such as occur in the ionosphere. The most common method is the
use of the Langmuir probe. There are, however, certain ambiguities associated
with the operation of these probes [1, 2]®#. Certain types of double probes,
modifications of the Langmuir probe, are also in use [3, 4]. A comparisom of
measurements obtained on rockets and satellites by use of these probes has recently
been given by Evans [5], along with a comparison with the radar backscatter
technique. This latter method will not interest us in the present discussion,
however, because we are interested in methods of obtaining in situ measurements.
There has also been some work done on a triple probe [6], although this device
has not yet been used for ionosphere studies. The double and triple probes have
esgentially the same ambiguities as the Langmuir probes.

It was principally because of the difficulties with the probes listed above
that the so~called "resonance probe" was developed [2, 7, 8], This method takes
advantage of the resonance at a certain frequency. One advantage of this type of
probe over the Langmuir type is that the results are relatively insensitive to
the shape or size of the probe and sheath.

The analysis for the resonance probe has recently been extended to include
the effect of a static magnetic field, under certain conditions [9]. There is,
however, no provision for the possibility that the electron temperature may be

anisotropic.
®

Numbers in brackets refer to the correspondingly mumbered references om 3. 90.




With this short discussion of the probes now being used for the study of
the low density ionosphere plesma, we will now discuss the basic ideas behind
the new mathod being presentad here. More exhaustive discussions of probes, and
also other methods used mostly for the study of laboratory plasmas, can be found
in the books by Heald and Wharton [10] and by Buddlestone and leonard [11].

Supposae that two electromagnetic fields with angular frequencies m, and o,
are externally applied to a plasma. It will be supposed in the following
discussion that these frequencies are completely arbitrary in nature, i.e., they
are not harmonicslly related to each other or to the characteristic frequencies
of the plasma = the electron and ion plasma and cyclotron frequencies. It is
well known that fields are gemerated in the plasma characterized by harmonics of
oy, and o, and the best frequencies , +uy and o, -0y, As a result of the
application of these two external fields, = current density will be produced.

This current density will consist of a sum of terme involving the single frequencies,
@, and u,, (vhich can be investigated by means of a linearized theory) and, in
addition, terms involving higher harmonics of @y and o and also terms involving

sum and differences of the various frequencies. These terms are all consequences

of the nonlinear interactions occurring within the plasma.

We shall single out for study the contributions to the current density
associated with the dbeat frequencies, @ + . The main objec=ive here 18 to
provide a better means for measuring the electron temperature in a plasma (in
particular, a low density, low temperature ionosphere plasma) than is currently
| available in the probe methods discussed above.

One distinctive feature of this method, which can be stated at the outset,
is that it {nvolves measurements of only AC currents, whereas all the conventional
probe methods involve measurements of DC currents.

The theoretical problem is mathematically formulated in Section 2. Section 3

is then devoted to a discussion of the linearized theory of plasmsa waves, with




emphasis on the problem under consideration. Section 4 contains the solution

of the nonlinear problem, i.e., the calculation of the current densities
associated with the sum and difference frequencies, w, + w,. In Section 5 we
give some numerical examples of the results obtained in the previous section, and

finally, Section 6 consists of concluding remarks.

2. FORMULATION OF THR PROBLEM

The plasma will be described by considering Maxwell's equations in conjunction
with the Boltzmann equations for the electrons, ions, and neutral particles. For
simplicity, the ions will be considered to be immobile, the positive ions being
replaced by a smeared out positive charge background. The frequencies to be
considered will always be sufficiently high so that this approximation is justified.

The Boltzmann equation for the electrons is given by (in MKS units)

2 7N e — (9_35 (0
[ﬂﬂi 4 m (£ 4 8) by % ]DCO('!’t) T\ T gy

where the right side represents the change of the electron distributiom, £, due to
collisions between electrons and other particles. The vector, B, will be decomposed

into

B = B, + B (2)

s

vhere B, represents a static field and By the internal field in the plasma due to

motion of the electrons.
The collision term, in general, is quite complicated. We will, however,
restrict consideration to the case of the Felayer of the ionosphere or, more

exactly, to regions of the ionosphere for which the following inequality is satisfied,

p L L W (3)




where v is the collision frequency for momentum transfer and ® is the frequency
of one of the external fields. In this situation®, the collision term can be

written as

(__9_35) — Y (750 — 9C) )

>E <oll

where £, is the zero-order distribution function and the collision frequency, v,
is independent of velocity.

We now decompose the distribution function into the form,

f =4 + F (5)

where £, is the zero=order distribution functiom which satisfies

(Xx£c>‘%—i7°—- = O )

where

(A’i(, E 75%— /8\'0‘

The scalar |w¢| is the electron cyclotron (angular) frequency.

The most general solution of (6) is

§:o — 7C0 <1_/L.Q_)V/I) ™

vhere
Vi = E o ( ,8\" ”g
P 5>
Vi = v -V

_ )G A

There is, in addition, another condition in order that (4) be valid [12].
Namely, the Larmor radius of the electrons in the static magnetic field
must be much less than the wavelengths of the waves propagating in the
plasma. This condition is always satisfied in the cases considered here.




and £, is an arbitrary function of its arguments.
We will assume that the plasma (ionosphere) is in thermal equilibrium before
the external fields are applied, snd take f, to be:

2

// !:I.
75; =N, (Z?r') ‘e, 6 ‘“‘Pf 64. * )J )

vhere 0; and Gy are clectron temperatures expfeued in epergy units. We have
allowed for the fact that the mathematics of the problem allows the possibility
that the electron temperatures parallel and perpendicular to the static magnetic
field may be different., The plasma probes now in use cannot measure this
anisotropy of the temperature,

There i{s some controversy at present concerning the question of whether or
not the {onosphere is in thermal equilibrium ({3, 13-15]. The assumption (8) is
not necessary for the development of the present method, and is made only for
definiteness., We could, for example, use, instead of (8), a distribution function
vhich included the effects of high velocity particles (i.e., velocity > (9_: k).

Substituting (5) into (1) and making use of (2), (4), and (6) we obtain

E/-/»;.;i}% X'Z“(wa‘) Jé,‘ (E.,va A)Q;o

L (g +yx8) g’c’

(9) has been written in such a way that all nonlinear terms are on the right side.

(9

It {8 these terms that give rise to the beat frequencies. Note also that we are
not neglecting the terms involving the internal magnetic field, au is quite
fraquently done. The reason is that we are looking for a small effect so that the
magnatic terms are important. Indeed, there are cases even in the linear theory

for which the magnatic terms are important, as pointed out by Scarf [16].




The problem before us is to solve (9) in conjunction with

A
. / x _ < Py 3
(,‘fo" *‘c"‘z;;;z)E’é’oz‘{;‘z, v 5 AV (10)

vhich is easily derived from Maxwell's equations {f we note that the current density

is defined in terms of the distribution function by
{

j_ = ,ef),{ JC(QSV = - QIX fl st (11)

a—
s

The procedure will be to solve (9) for £, by an iteration procedure, and then
obtain B from (10). The internal magnetic field, 21. is found from the differential
formulation of FParaday's law,
fo:’%’é,;, (12)

In using an iteration method to solve (9), the assumption is made that the
nonlinearities are "small". Similar procedures have been used previously [17-21]
and are convenient because all that is required i{s a straightforward genmeralization
of the well~knowm linearized theory. The manner in which the iteration process is
formulated in the present work is different, however, from that of the papers just
cited,

It 18 clear from physical considerations that such an approach must work in
the present problem, since nonlinear propagation effects have been observed in
the ionosphere at quite low field strengths [17]. It is expected, therefore, that
the iteration procedure will produce meaningful results. In this sense, the
ionosphere can be characterized as a weakly nonlinear medium, in contrast with
some of the strongly nonlinear media currently of interest in nonlinear optics

{22]. This idea is essentially contained in Danilkin's paper [19].




In order to carry out the iteration process, we need the solution to the
linearized problem, i.e., when the right side of (9) is set equal to zero. This

topic is discussed in the next section.

3.  LINBARIZED THEOGRY
The linearized form of (9) is:

[+ 2 +p0-lre) 2 )R (€ #2008 T2 o

2T
P

To examine the steady=state plane wave solutions of this equation along with

(10), we make the ansatz:

)ECl 77 ~ wxp [L (KX ~wz) ] (14)
B: )

B.

The frequency, 0, 18 taken to be real (it will later be taken to be either w,, u,,
or a linear combination of the two! but the propagation vector, k, may be complex.

Substitution of (14) into (13) gives:

[t i (0d =) = ey 2 15 = 2levrn) 25 0

/\,

It is now convenient to choose the coordinate system so that the static

magnetic field lies along the ze~axis. Introducing cylindrical coordinates
W = V. <coS$ 7
ng = lﬁ, 51“7’
v

I

(16)

)

-—

we find [23,24]

FI V)= & ﬁéE V/xg'og£ K N Ao’ Qan
I(\{L'ﬂ ")"—' 1Y ,3) ’76<~1w/¢1f) 4




where
R,
Gt ait) 2 exp i ,j [+ (y'=) dp" ]

(18)

= 2XP i —-"—[K (s:’nf——S/'nf') Ky Vi Vi (CoSf’—COSf")‘]
L[y tital-0)1e-7) 5,
The primed velocity vector in (17) is a shorthand notation and is defined, by
means of (16), in terms of unprimed radial and axial variables and a primed angular
variable. The lower limit in (17) has been chosen in such a way that £, is bounded
and i3 periodic in ¢ with period 2.
The equation for the electric field, E, i8 determined by substituting (17)

into (10), making use of (14). After some manipulations, we find

ﬁ:(ﬁg/s = O (19)

d@;(F = (%”Kl)&fz t K K/[S "L-—-—/gls( ) (20)

In (19) we have introduced the sumation convention in which a repeated
subscript is summed from 1 to 3. The quantity ogg is the conductivity tensor

defined by

\

b = - Ju sl = g kg an

and is equal to

7 ‘4 ,
5 .= — 2 3 5 KW 2_& K 250 Ve fe e o) s
7(]5 - mw, SKQ 4 Vo( [Q l(:)x——-)gvpi -+ 5 ;—N—Yr V_,"é(-’ ,r‘,f),?fl (22)




In order that nonetrivial solutions of (19) exist we must have
L7 (Bp) = O, | (23)
The solutions of this equation determine the dispersion relations of the waves
which can propagate in the plasma.

In order to solve (23), or even to write it out explicitly, the conductivity
tensor must be determined; i.e., the velocity space integrations indicated in (22)
must be evaluated. These integrations, in fact, can be dome exactly [25], the
results being expressed in terms of Bessel functions and error functions. (23)
then becomes a transcendental equation which must be solved to obtain the dispersion
relations of the various waves in the plasma, This procedure is, of course, very
difficult to carry out. There is, however, a simplification which can be made here
which is standard procedure in the linearized theory of plasma waves. The idea is
to consider the case for which the phase velocity is mmch greater than the thermal
velocity of the electrons. This is, in fact, the actual physical situation except
near resonances [12]. For the cases in which this approximation is not satisfied
the waves are strongly damped, so that this situation i8 not interesting. This
damping is the analog of the damping of longitudinal waves in the absence of an
external magnetic field, first found by Landau [26]. It is now known [23-25,27]
that analogous damping phenomena exist for other types of waves,

The procedure, then, is to introduce the small~argument expansions for the
Bessel functions and the asymptotic expansions for the error functions, so that
the dispersion relations are determined to lowest order in ¥®. This procedure is
sufficient for the waves being considered here, since the wavelengths are very
long, i.e., A >> \p = Debye length,

Using the above procedure (23) becomes a cubic equation in ¥, The situation
simplifies even further if consideration is restricted to the cases of propagation

either parallel or perpendicular to the static magnetic field. In these cases the



cubic equation degenerates into a product of two factors, one linear and onme
quadratic in k®,

This last step is done in order to simplify the analysis, but is not a
necessary restriction of the present theory. The consideration of these two
limiting cases should be sufficient to determine whether or not the diagnostié

method being proposed in this report is feasible.

3.1
Pollowing the procedure discussed above, (23) becomes, in this case:
£y B O "
ﬁq.l "B—’L’L O — O
B
where: O O 33
) 1 2. ? 1
Py = Py = Kol i,—ht”"' (*n”')[/'f'“ Polo t 1 Pu [ Ujg
’ 9 2 ' :
Py = A KA 71+ hz/%. Par + 7By /“1”3 (25)

bay = KET) e G0 (14 2 pr)d

In (25), k, & %’- 18 the vacuwm wave number and n = %‘-‘- is the refractive index.

The temperature effects are contained in the dimensionless quantities,

— E-y il
Pon = +) (26)
m C’)_.

The following normalized quantities are commonly used in the magneto=ionic

theory and are convenient for the present problem,

_ X O
o(\ — /" W

_ XY |
Xy = ST (27)

_ X
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vhere X, Y, and U are the following normalized frequencies:

. - it -
X - C (A)f) t _ ho £
- 6o Mmeé, w:

y We (28)

= w
U 2 1+L2 , %

®p being the familiar electron plasma frequency. It will be noted that the

&
—

W

M
M

definition of U used here corresponds to the choice of sign for the exponential
in (14).

The significance of the quantities defined by (27) is that the elements of
the dielectric tensor of a zaro temperature plasma can be completely expressed in
terms of them.

The remaining quantities in (25) are functions only of the normalized
2 Z
Moo = oY
- g 1
0 (=YY

/Al o= 0,3)<_(-U)+ )/2(3()-”/1)
- 0 (U’L,Y’L)'L

parameters Y and U:

}

p = AU
L U'L__Y'l
foy = Vi(1-20) + 71(/+1U)

One solution of (24) occurs when

;333;0

11



or

(f’lm) h = (29)
ap—— it b l
3/“?;» /6/; C/"o(3)
The superscript indicates that this solution will henceforth be called '"mode mo. 1".

The remaining solutions of (24) are obtained from the condition

ﬁ'/l =1L P

. =<, 1
2. |~ 2
n = ¢« (30)

J# (= X B oy + B fon) T A (B st Poban)

Henceforth the solution for the upper sign in (30) will be denoted by "mode

no, 2" and that for the lower sign by "mode no. 3". These solutions correspond

to the ordinary and extraordinary waves of the magneto-iomic theory {28]. The
corrections for finite temperature or compressibility are given in the second and
third terms of the denominator. It will be shown in Section 5 that these correc-
tions are completely nmegligible for the cases of interest in the present investiga-
tion, so that (30) will reduce to the results obtained from the zero-temperature
magneto~ionic theory.

The wave described by (29) i{s longitudinal and linearly polarized along its
direction of propagation, which is also the direction of the static magnetic field.
It will be noted that the refractive index is independent of the static magnetic
field. This is the familiar lomgitudinal plasma wave. It will be noted that By
appears in the denominator of (29), so that {nf??| will be very large and the phase
velocity very small (of the order of the thermal velocity).

The waves described by (30) are circularly polarized in the plane perpendicular
to the static magnetic field. For very high frequency, w - =, {30) reduces to the

dispersion relation for electromagnetic waves in vacuum, h’L - [ ,

12



We will next comsider propagation slong the X~axis.

Pollowing the same procedure, (23) can again be written in the form (24)

with the elements of the determinant now defined by:

Fy = Kol {/‘/’ (- (1 + ”1/5-‘ ’\"‘-)}
Yoy o= KT - -0 n AL

31
i‘733 = Kol {/~ /11-;—(:(,)4)):/ + hz/f',, >\3,,+/'\1/5,¢. /\LL]}

b, :-/CK:'O(-,_ (1+ h1ﬁ4. >\o.L>

where: N 7
}\ = 5 ‘ /\ = __B__—f_i?__z————'—
L - ()1"/72' J 2L P()—’l (uq; L{yl)
- Y - (=Y
Asn = T A / As,l. = o= Yt
) _ 6
ol ~— oL L/yl ’

One solution is again given by
Py = O

x
Q') (,)) h - E \ .
[+ (/’”(3)(/511 >‘5u + IB,L 3,L>

It will be noted that the depeandence of o{1) on the transverse electrom temperature

vanishes if collisions are neglected. As already noted in connection with (30),

the temperature dependent terms in (32) are very small for the cases of interest

13



in the present work. Numerical examples will be considered later. Thus, (32) can

be simplified to read
A

(}’) ”)) = X3 (32a)

J

the same result obtained from the magneto-ionic theory.

The other solutions are determined by the condition
2
OBT; ﬁ 21 +- ﬁ I = QO

which can be written as the following algebraic equatioa

2
//)17/ E/~ dl)/s,l— >‘u_</ "f‘(/—”ﬁ\ﬁJ_)\z_D"/BJ:.L Xo,L lel
*-/’)1 [?(\(/—\L([’O‘/}PJ.()\;J_+/\Z_L\>+’Z,/5‘L AO,L dlll {33)
"}‘ 0(,1—«-0(7__1 puand O R

By using the fact that the temperature effects are small, we obtain the simpler

equation
s
"’(0(5»)‘«_(_ ML/" 0<\}4 -+ d'1~d5 = O, (33a)

The solutions to this equation (taking into account the small magnitude of

the temperature terms) are:

0 = yEm e

(2)) T XV Ay (35)
(//, ) ' O<,

The wave described by (32) is linearly polarized parallel to the static

{1

magnetic field and is, therefore, a transverse wave. In the limit w = =,




(32) reduces to the dispersion relation for electromagnetic waves in vacuum. At
lower frequencies there is a correction to the vacuum dispersion relation due to
presence of the plasma. The static magnetic field has no appreciable effect on
this wave because the temperature corrections are negligible, as is readily seen
from (32).

The waves described by (34) and (35) are elliptically polarized in the xy-
plane. Thus, the polarization is mixed, being neither purely longitudinal nor
purely transverse.

It will be noted that the temperature corrections for modes no. 1 and no. 3
are negligible, whereas this is not true for mode no. 2. Note also that the
dispersion relations given by (32) and (35) reduce to the dispersion relation for
vacuum electromagnetic waves in the limit w - o, whereas (34) - © (mode no. 2).

The solutions for the refractive indices derived in this section, for both
parallel and perpendicular propagation, will be discussed in more detail in later
sections, after expressions for the current densities are derived.

We have thus obtained the plane wave solutions of the equations of motion.

We can now use the fact that the equations are linear, and therefore that the

superposition prinéiple is valid, to construct the general solutions (in the linear

approximation) from the plane wave solutions obtained above.

The electric field will be written as

E(o: { Z[ szﬁ(A("Y X—LO‘Z')> + c. c] 6

~ o(—t (=1

vhere "c.c." denote the complex conjugate of the preceding term. The summation
over @ indicates that we add the contributions of all the propagating plasma wave
modes, which in general are three. The summation over y is a consequence of the

fact that two external fields are applied to the plasma. The amplitudes of the

15




electric fields, :%’, are solutions of (19). The zero superscript is used above,
and henceforth, to denote quantities obtained in the linear approxinption.

We use the form (36) instead of the usual prescription in which a single
plane vave is used, with the understanding that only the real part is to be taken
after the calculation. The form (36) is used by Bloembergen [22] and others in
nonlinear optics. 1t produces an additional factor of 2 over that of the usual
method, but this is easily remedied at the end of the calculation.

By writing expressions in the form (36), the results will be real quantities,
as they should be,

In a similar manner the distribution function, £, B £ « £, will be written

in the following way:

(0) >z « o
e = r Ky X — z
L=l =1
vhere:

O ~

X f ! %
Ao L (G 0m)2eE et 49
) ¢

The amplitude of the internal magnetic field, lg, is related to 39,' by the relation

« } « 4
bY = ——(A—)-"' K Y x A Y (39)
—~ \( Fand P

which 18 a consequence of (12).
We are now ready to obtain the solution of the nonlinear system (9) and (10).
This will be discussed in the next sectiom.

Before proceeding, however, we should discuss in somewhat more detail the
consequences of writing (36) and (37) as a sum of plane waves, since there is an

approximation involved.

i6



There are known examples of cases in vhich plane wave solutioms are not
valid {26,29,30). Landau [26] comsidered the problem of penetration of an
external field into a plasma in the absence of a static magnetic field, comsidering
only the longitudinal field. This analysis was extended by Shafranov [30] and by
Platzman and Bucksbaum [29] to the case of propagation parallel to a static
magnetic field. The results of these investigations are that the asymptotic
results for the fields (f.e., far from the boundary inside the plasma) are
(z = distance from the boundary)
~ £ X P ("'
for a Maxwellian distribution [26,30] and
o~ ZE =

for a resonance distribution [29]. Platzman and Bucksbaum have pointed out that

f/a)

these effects can be ignored if one is not near a resonance and not top far from
the boundary. We must point out, however, that these results were obtained for
plasmas with thermal energies of the order of 30 ev [29]. On the contrary, the
present work is concerned with plasmas for which the maximum thermal emergies are
of the order 0,1 ev. Therefore, the effects discussed above should not be

significant for the present work even far from the plasma boundary. We will not

consider caseé for which the plasma is near resonance.

4,

We now evaluate the right side of (9) by using (36) and (37) for the zero-order
quantities. The resulting linear equation for the next iterative solution (lowest

order nonlinear solution) for £, , hereafter called f,(‘) is:

~ i) e/ 0) (/1 7C
2 . _— E ’ /Q = 40
frozrrgeng ) - €M) = R e
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~ ~ AV
£! ¥ . <!
(6 ey 3 B )]
+ <, <, } ‘D

The quantities E‘” and 2’1‘) denote the electric field and internal magnetic
field, respectively, in the lowest order nonlinear approximation, and the * denotes
the complex conjugate.,

The current density is defined by :

(o]
PR Y LR S 7 ST A AV 4%
A (42)
- j,‘[ (7C/ (0)+ 7C,(l)) 0?31/,

We will concentrate, in the following work, on the contribution to (42) from the
beat frequencies; i.e., the sum and difference frequencies uy, + ., Thus, we will
not be concermed with the contributions to (42) from single frequencies, contained
in £,(°) » nor from the terms produced by harmonic generatiom, contained in f,“’ N
The contributions to (42) associated with the frequencies wy + uy and @, = uy will
be denoted by i") and 3’("’ , respectively.

In view of the above remarks, it will not be necessary to consider all the
terms in (41). The terms of R which will be of interest to us are the following,

denoted by R, with corresponding notation for 'f;u’ :

18



o [/:((5:+5,*5.z - re)]

2 F
>
(8 2 B a2 (1K) 5 -]

(43)

We now consider (40) with R replaced by ¥ and !,“’ by ?.lu’ . Since R is
expressed as a sum of plane waves, we can decompose the variables in (40) in a

similar manner:
—_— 3 3 o(g(' /
5= 7 2 I el - oo d]
l’/-—
A=l x'z1

4 AT ewp () - (e T

(44)
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£V 7 2 I ep L (eehen - )]

L= L=1

b M v [ ()X = (207 ]
b M g [ (K x (o 7))
4 M;A .exp[,é ((ff—,"j()'l( ,(wl..w,)z)J

(45)

! ((ff/’(“f_:’)'l( - (“)I'w"—)z—)_] (46

The amplitudes in (46) are related to those in (45) as a consequence of

(12). PFor example,
‘ <!

NOMI: ! (’fj( 'H(;( ) x M/ (47)
/ w{.{,w,‘_ - A~ ‘
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The relations between the other amplitudes are obtained in an analogous manner.
Comparison of (40) with (43)=(46) indicates that the solutions for each plane
wave can be obtained separately. 1In the following development we will consider
only the derivation of results for the first term listed in (43)=(46). This is
actually all that i{s required in order to determine j("’ and j"” » because the
contributions of the remaining terms can be obtained-simply b; changes in notation.
Thus, the contributions of the second terms can be obtained from those of the
first terms by the transformations 1 * 2 on the subscipts of the propagation vectors
and frequencies. The contributions of the third terms are found from those of the

first terms by means of the transformations,
X! ~ </
K) 1+ K A > K, — K,
-~ —~ (48)

N >
w, + W, T w, - “’z ,

Finally, the contributions of the fourth terms are obtained from those of tha third
terms by the transformations 1 = 2 on the subscripts. Of course, another contri-
bution is obtained from each of the four terms discussed above by taking the
complex conjugate.

Pollowing the procedure of Section 3, we obtain:

i !
AA — <!

/ e g 24, /
A:(‘Q'%%):Ej[?(,ﬁ' ”&/xﬁ’ )9 TR K )} (49)

=7
Yé(’i“‘)w*’ 7 ¢ ) pqip
where !
— !, i A ! A o)
R (,‘i) = %(,J"LKX,éz)'Q’;’: 2
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and we have introduced the shorthand notatiom,

% <’
K, = K '+ K
~+ - A-’ /\'1 (50)

W, Z W, + W,
¢
We now eliminate Aﬁu by substituting from (49) into the plane wave version

of (10), making use of (47):

X My = 2% - Xﬂf RWIE(ke; 07) o0

éc.

where 85}’ 1s defined in analogy with (20),

Q]
By = (a-KE + Kea Kop + 258 Gy (1) 2), 52

7

It follows from (23) that
()
’
so that (51) can be solved for »{" « The vemaining task then is to perform the

velocity-space integratioms.

The contribution to the current density is:

£« ! ¢ -
! QJV\( ’ £3V QXP["'(E»* X ‘*’/rf)]

Jy
! <’ o<o<
A_U)+ U) Ket X = 0 T]
_[ Sy 1 Y;(Kh‘*’ﬁ + 7 Jexﬁ[//(*‘ ) (53)
which follows from (22), (47), (49), and (51), and in which the quantity, T, is
defined by:
« X ~AA!
I -:‘ .._f 13f£¢ R70C) & (ke w +,¢,f)' (54)
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Thus, the velocity-space integrations which remain to be done are embedied in the
single functionaza

The types of integrals encountered in the evaluation of (54) are similar to
those discussed in Section 3, bu; are much more complicated. Thus, the procedure
used before, i.e., evaluating the integrals exactly and then using small-argument
and asymptotic expamsions for the various functions, turms out to be very iavolved,
although this procedure cotsld conceivably be carried out.

It 4s fortunate, therefore, that zn altermative and equivalent procedure to
that described abéve existe., The use of the expansions described above involves
the assumption, as was discussed in Section 3, that the ratio of the thermai
velocity to the phase velocity of the various waves involved ir the problem can
be treated as a small parsmeter, This is also the condition that Landau<-type
dawping can be neglected {12}. In the integrals contained in {54}, we have not

5 % 9 Y%
only the phase velocities ' E‘, but zliso the jquantities Ez-and \rad) which mst
be considered large (i.e., large compared with the thermsal velocities}. It will
becowe evident from the numerical examples considered later that these conditions
are satisfied for the data to be chosger.

The procedure used in the evaluation of the integrals im {54) 1s to expand
the integrand in powers of k, and then perform the integrations. A typical
combination {nvolved in the expansion is

KeV (55)
wC.

where v is either vy or vy and k, denotes & cartesian component of the vector k,.
Now, since v is integrated over an infinite range, it is not clear a priori that
this procedure is valid. Howevexr, because of the presence of the Maxwellian
distribution, most of the contribution to the integrals comes from the small

velocity region. Therefore, when we expand in the parameter given by (55) we are,
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in effect, expanding in a parameter equal to the thermal velocity divided by the
"phase velocity" %—. Moreover, it has been verified by direct computation that
this procedure gives the same results as the first method, viz., evaluating the
integrals exactly and then introducing the small~argument and asymptotic expansions.

In th: event that a different zero=order function than Maxwellian were chosen,
the procedure just described would have to be reexamined. In any case, it would
always be possible to use the method employed in the linearized case. The
calculations would just become more complicated than those for the present
{Maxwellian) case.

By expanding the integrand of (54) in powers of .‘f? through the second paower,
it is a straightforward but tedious process to show that only the linear terms
give non-vanishing results. Because of the low temperature of the electroms,
there is no advantage in carrying the expansion farther.

Even with these simplifications it is exceedingly tedious to evaluate (54)
in the general case, i.e., in the case of propagation at an arbitrary angle with
respect to the static magnetic field. The reason is that, although the integra-
tions are trivial, there are so many of them that the bookkeeping becomes
horrendous. PFor this reason we will confine our consideration in the present
treatment to the special cases of propagation parallel and perpendicular to the
static magnetic field.

As we stated in Section 3, this restriction is for purposes of simplicity and
is not a necessary restriction of the theory. The consideration of these two
limiting cases should be sufficient to determine whether or mot the diagnostic
method being proposed in this report is feasible.

4.1 Propagation Paxallel to the Stgtic Magpetic Ficld

We see from the analysis in Section 3.1, in particular (24), that the

amplitudes of the waves are still not determined. Therefore, we turn our attention
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to this problem before discussing the results of carrying out the integrations
in (54).

In order to determine the wave amplitudes, we consider a boundary value
problem i{n which the plasma is considered to exist in the half~space z > 0, whereas
the half~space £ < 0 {s a vacuwmm. Now suppose that a transverse electromagnetic
wave is normally incident on the plasma-vacuum boundary from the vacuwm side. We
will apply boundary conditions at z = 0 in order to determine the wave amplitudes
in the plasma. |

There has been a great deal of work donme on problems of the type described
in the above paragraph [31-37]. The idea behind most of this work was to
investigate the question of radiation by plasma oscillatioms, which is thought
to be an important mechanism in solar flares [38]. Our motivation for considering
this problem is, of course, d{fferent.

It follows from (24) and the relations above (30) that

(2) )
and
G )

In the discussion of boundary conditions we will not indicate the frequency
dependence. The same analysis applies to either w, or u,.

Using the usual boundary conditions (at z = 0) of the continuity of the
tangential electric and magnetic fields, taking note of the fact that mode 1 is
longitudinal and modes 2 and 3 are transverse, and eliminating the amplitudes of

the reflected waves, we obtain:

( (3)
(K4 KO)A,% + (K7+ Ko)Ayy = &K, Axly 8

where A = (A;, Ay, 0) is the vector amplitude of the incident wave. Eliminating
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the y-components among (56)<(58) we obtain

(1) KO 4
p— +
ﬂ-x m (AX /43) (59)

(3) Ko
d,: = m (14)(-,41/49) .

(60)

Thus, the amplitudes of the ordinary and extraordinary waves in the plasma
are given in terms of the amplitudes of the externmal field by (56), (57), (59), and
{60).

It will be noted that the above considerations do not determine the amplitude
of the longitudinal wave. In order to obtain this quantity another boundary
condition must be imposed on the system. The condition usually imposed in the
fluid formulations of the problem [31,34,35,37] is that the normal component of
the mean velocity of the electrons vanishes at the boundary. An argument given
by Field [31]) shows that this condition is equivalent to the condition of specular
reflection used in formulations by means of the Boltzmann theory [26,29,30,39].

The normal component (i.e., in the z direction) of the mean velocity of the

electrons is defined by

v =

2

3
4
JuAh Ly gy
S F Ly
since the contribution of f; to the mmerator vanishes.

Substituting the expression {obtained from (17))

3 i
) e ,
jc; :”—)—%:g :[f?’ ({/}(“+~V x b )'2-;0’C>(/3[—»—:(K z{,—w-,,,;/)((f-(,ﬂ
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into (61), performing the integrations, and requiring that Vz‘-o = 0 leads to
the result, ’

Ag) = O , (62)
Thus, when propagation is parallel to the static magnetic field no longitudinal
waves are generated at the density discontimuity. This result is in agreement
with previous investigations [29,30].

We are now ready to derive the expressions for j‘*” o We will first derive
the expression for the component along the static magnetic field (which is also
the direction of propagation).

The elements of the inverse mgtrices in (53) are easily found from (24) and

(25). Putting ¥ = 3 in (53) we £ind

-
= [I + (Ase ’XH' ”_;L Bu Ms u+ﬂ eXp [L(Kr} - o)_,_T)J (63)

where the quantities with the "+" subscript are the same as previously given in
Section 3, except that they now refer to the frequency v, , as defined in (50).

We see that for this component of current density only one component of I‘_W‘
is required. As we have mentioned previously, the evaluation of E""‘ from (54) is
a straightforward but tedious process, For this reason we will only quote the

result at this point. The procedure will be given in Appendix I. We find:
xo¢! !
_ 2 x X! £ «
I -“éo‘ofz/ A, Azr —~ A1z Ay

,[;Ki‘h i 1( 1% uz(/wz))

+Ill
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, !
A2
2
2wt w, U, (- )’:) Yy

(Ux (Ua.“ ’)(U: - 77’1)

+AKe U (V=) B, j

- 60_,? Qz(uf'yzz) Y.(. —FI

«
o« At Y —- K U. + +
wyw, w, U, (L7, (64)

+ KZ«(’U__U,,)/ A 01‘71 " f—"— 0 >
| Wk ), (Uf-Yzl)z (’* (W=7 ) A *
| — K (Uy-1) m% } -QXfE/':(K-f%“(")‘#—T)]

| wrw, O (V-
T where use has been made of (62). In the double subscripts used above, the first

applies to the frequency dependence (&, or u,) and the second denotes the cartesian
component of the quantity, (1,2,3) = (x,y,z).

By substituting (64) into (63), suming over @ and o’ from 2 to 3, and using
(50), the contribution to the beat=frequency current densities stemming from the
first term in (44) is obtained. The remaining contributions are obtained Sy the
transformations discussed on p. 21. The total result for these current densities

is: 0/3))

&) 2 K (3n ! — | Kez
%":%éo“’r—%,:&z/w ) e

—

LU A (e -57H)+ 873 e+ < W]

AT ST

+ (65)
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L (P e o,
[T AT A

+ (M(;,Z) ~[ (3, /”.... m +B+3"’)( (¥?) m (”1) ”)‘]j

In order not to interrupt the contimuity of the discussion we list the definitions
of the quantities appearing in (65) in Appendix II,

A factor of 4 has been deleted from (65), f{n accordance with the discussion
on p. 16,

It wvill be noted that, if one takes the limit ®. =< 0 in (64) in a straight-
forward way, divergences appear in some of the terms. This situation i{s unsatise
factory because this limit must exist. The resolution of the difficulty 4s that
the limit must be taken as

S AU
= o (66)

(d
When this is done the correct limit is obtained. The need for this subtlety does
not arise in the linearized theory.

We also note that (64) only has a temperature dependence if the temperatures
are unequal gnd if collisions are present. The temperature-dependent terms vanish
in the collisionless case. |

In order to derive corresponding results for the other two coordinate
directions, we note that it follows from (53) that Jlm. and J,m' depend on
Flm' and I‘,m‘, but are independent of I‘,w.o These conclusions are easily
derived by using the same procedure which led to (63) for J,‘m'o. It now can be

shown by applying the procedure given fn Appendix I to (54) that
!

F — /.70(0( — o
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because of (62). Thus we see that
;(i) = 0/1:(1) = O (67)
X J ‘

Thus, the current densities associated with the beat frequencies have only one
non-vanishing component, the one parallel to the direction of propagation and the
static magnetfc field. This result ias reasonable from the physical point of view,
becanse when propagation occurs parallel to the static magnetic field the plasma
acts essentially like an isotropic medium in that the current flows parallel to
the field. The static magnetic field still has an important effect, however, in
that i{t makes the plasma birefringent.

The numerical aspects of (65) will be discussed later in Section 5.

4.2

The analysis for this case proceeds in an exactly analogous manner to
that for parallel propagation in Sec. 4.1. The first step is the determination of
the wave amplitudes.

The boundary value problem is formulated in essentially the same way, except
that now we consider the case of propagation along the x-=axis, so that the plasma
occupies the halfespace x > 0, and vacuun the half-space x < 0, The static magnetic
field is again directed along the z-axis.

From the form of (24) and the expressions listed in (31) we obtain:

2 ’ 2 3
d( 13): ‘h“a(l—{'h /d) /\0—1—)_______ 4(2) ) (68)

" /4 (x-1)(1 + 1A A,A )

As in the treatment of the case of parallel propagation, we will not indicate the

frequency dependence in discussing the boundary conditions. The same analysis

will apply to either w, or uy.
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We have previously noted that the temperature=dependent terms in expressions

involving single frequencies are negligible (see Section 5) so that (68) becomes:

(2,3) ’ (13)
. = -2 a4y (69)
=y

Using the usual boundary conditions (at x = 0) of the continuity of the

tangential electric and magnetic fields, taking note of the fact that mode 1 is
polarized along the z~axis and modes 2 and 3 are polarized in the xy=plane, and

eliminating the amplitudes of the reflected waves, we obtain:

4(’ ) _ A K 0 A
2 m Z (70)
(v) (71)

) 3) @)
(K. + K )49 + (K, + K )6(7 = QsKoAj.

It i3 obvious that the system of three equations (69) and (71) is not
sufficient to determine the four unknowns a,‘a"” ’ ay‘a’s’ o

In a proper formulstion of the problem amother boundary condition must be
imposed in order to provide the required additional equation. The boundary
condition 18 the same as that used in the case of parallel propagation, i.e., the
vanishing of the normal component of the mean electron velocity at the plasma
boundary.

For our present purposes, however, it will not be necessary to carry out
these calculations. It was pointed out in Section 3 that the propagation vectors
of modes 1 and 3 are temperature-independent, whereas the propagation vector of
mode 2 is strongly temperature-dependent. This means that the phase velocity of
mode 2 is approximately equal to the thermal electrom velocity. As was also
discussed in Section 3, this is the condition for the wave to be strongly damped.

Thus, mode 2 will be strongly damped in a very short distance and, therefore, will
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not give a significant contribution to our results, We can, therefore, put
4. = a 9 = O, (72)

(69) and (71) can now be solved for the smplitudes of mode 3:

) 2 Ko (73)
3) VAL (34)
d)( = T~ ) dj ’

We are now veady to derive the expressions for j‘” o The first such expression
to be considered will be the component of current demsity parallel to the direction
of the static magnetic field.

Pollowing the same procedure that led to (63), we obtain:
, , -1
S (RS RN QTS PR MR AN )
“exp [A: (ke X —(")-ft)J
and we are again using the shorthand notation (50). As was the case with (63), we
see that the above result depends on only ome compoment of .I_“u'.,

Following the procedure given in Appendix I, we obtain for the comtribution
from the first term in (44):

ol ! A ! _
N =-¢ w;{ Ka 4y Azs (% )) (V.- «ﬂ)

1 2
Aw, U, (Y-,

& a2l ) A 4,

:_”_‘_fi__’f__'ii_i.-—(u;hz/fi,ul) — B s T g
L

Ak W: 1, Y (UL‘YZ}) P
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4 "
P al L kai e (0 L o)

T YY) g aw, U, (- %,Y)
< <
o~ K/ A3 411 ( - S Vy (Uz")> (76)
02, w, wa U ( ) 24 3

+ ”’(: o 45 ) L K a4, ((U,-l)wl-zw+u+)
2w T, U, Um 2wiw, 0,0 (W= %)

-+ /“K.;- IZ 23 (YY U’)))
wrw, Y, U Uy (U~ Y+)

— K A,a An, (wo O, U, + )frz)
w: (‘): QL (uzl" ya-z) (VJ—‘L’ 7/4-1)

LKAy A (w (,-0.) + Y (% + %)
o, wp Yo (U5%7) (U5 YeT)

vhere use has been made of the game double subscript notation as in (64).

We note that (76) is a function of the ratio of the electron temperatures,
but not of the temperatures individually, and that this temperature dependence
vanishes in the collisionless case. An analogous situation was encountered in
the case of (64).

Substitution of (76) into (75), letting @ and @' equal 1 and 3 successively,
and using (50), gives one contribution to the current densities associated with
t:l;e beat frequencies. The remaining contributions are obtained by the transe

formations discussed on p. 21. The total result for these current demsities is:

33



};2 = A ﬁéo“); K, Koz
n{ "'lKu, ,4,% A__L, ( 0,3 I/S ':3 ‘13)(51,‘56' + F;,3 )
TR a3 -0

+ {&*IX /41% A,l) [5 3,/+ 3,1 3,,)(53,:6_/# F!,IH/) an

e

ETATIETET) o gy EN-FE) ]

+ T }

vhere "I" stands for all the preceding terms with the transformations 1 3 2 on
tha subscripts applied to them, The definitions of the various quantities appearing
in (77) are given in Appendix IIIX.

A factor of 4 has been deleted in the derivation of (77) for the same reason
as was done previously in the derivation of (65).

We now consider the derivation of results for the current densities parallel
to the direction of wave propagstion, i.e., along the x-=axis. One contribution

to the current density is:

o L e TR R Texp
B P+ ﬁ,%

and we again use the shorthand notation defined in (50). The quantities 6,,, %4,

2 “<! A/
:)_,.o(x': Koy [U ﬁm - o&z /7::. J [; (K+x—w+‘£)] (78)

85, and 9., are given by (20) and (31). They are functions of the variables k,

and w,, as given by (50). Thus, we need expressions for both I"m" and I',m'..




Following the procedure given in Appendix I, we obtain:
! / ’
=-e, or [ An 42+ KY, a5 a4k
LKL Al tR Y AT A R Ys Al
+ k+ Yé 4;( d:II * K+ Y7 4/;( 427/

’ £ <! <! < <! </ £ %
+ K: Yg d” 41/ +/<7, Y1 dl'?. 47_2 +/<7_ Y'o /{IZ 42/

!/

! £ , !
+ Kz YN a, dre j

79)

and

Y
XA D(, /

— Z « « o < o

/?7\ = & 6010 [K, Yn_ A Ay + /</ Y/3 A2 L3z
o« ! X 0</
+ }4;0( Yy L3 Aoz T Ki Nos v 422

L1 & ,(' L o(l

-+ K+ Y/é (1/: Ay A+ /<+ Y;'7 AII dﬁ/ + K4 Ylg dl’L AZZ

! o ! <! Y 44 é(a(/
4 K, Y;q 4y £y + Ko Yoo 92 (s

, A Al ! « %/
+ K: Yo A e + Ky Yal Az Aa ]
(80)

where we again use the shorthand notation 31vgn in (50). The coefficients v4 in

(79) and (80) are given in Appendix IV.
Substitution of (79) and (80) into (78) gives one contribution to the

current densities. Then by using the transformations discussed previously we obtain,
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after some algebra:

of + ,
j'(—-): £ ¢ 601 Kolkoz/],% Az;‘ "/K.taf’x
x Tm et °

wlwi(cj ‘*.’D,-L) Q'
*ﬁ&4+a@ﬂ$0mé—wm'1¢§+mL)

"KI(Q(N,G%M,H’J,E’I, L)J

~(8,¢,- AD)[,L(MG NH-T,K +3,L)
+K:L’(N,6+M,H—3,E—I;L)]}

23

e KAy I
(€5 +25) Qzmawa g

. A
’ Z(A§Cg+ Bs:DB>[M5(K: é-” K H}/)
“Na(€ G K H,) — T By K )
5 Ty (K Byt K Ly) ]
M
— (B.G= A, D) [Ny (K Gy = K2 Hy)
+ M3 (Ki{ 6’){“"4:{}{){) e (Kf,z){ ”'K/JMLJ»
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In the process of deriving (81), we have split the propagation vectors into

their real and imaginary parts,

oL Ka(\r t . Ka(,J ; Ky » Res real.

The letter "I" denotes, as in (77), the operation of writing all the preceding

terms with the transformation 1 2 2 on the subscripts, The remaining quantities

i in (81) are defined in Appendix V.

The last component of curreat density is that parallel to the y-axis.
’ Using the same procedure as in the derivation of (78), we obtain:

5 o 2 7 A4!

| xx! (;<,,+—/<4.)[/7 ,9,,+/1 D

Comparing the quantities in brackets in (78) and (82), ve see that they are

@ composed of the same quantities in different orders. This observation enables

| us to derive jy(:)by means of trivial manipulations on (81). We obtain

(2
}j( ): ,ew 74/% 742% e:-“(: [
W) Wy (CI ‘*:D/Z) Q;

{(Ac *B@D[_K (E,K-FL+1T 6 - J, H)
— K (F K+6 +mé+LHﬂ

~(8-AD)[K: (ER-FL+T 6 -T)H)
+K::3(f,z+e,z.+s,@+I,H)]}
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F(AsCsrBoB) [ Es (' By ~ K Ly)
AH _ f/H )
"’F( E,;/+Krz—) 5(/4«@}{ Ko fy
— 33 (lﬂ; &,{ 4’/{:{/‘,/4)‘]

H H
(8, Cs - A Do) [ (K By ~ K L)
H
453(; 1K L) +33(’<féx"ﬁ'#/4>

+I(I< +I§ H/{ } + T,

Factors of 4 have been deleted bfron (81) and (83) for the same reason as
previously discussed in conmnection with (65) and (77); i.e., because we are writing
the flelds in the form (36).

The summations over x in (81) and (83) are to be takem over the _values
n = 1,+,2 (see the definitions of the quantities given in Appendix V).

We have now completed the derivations of the contributioms to the current
densities associated with the beat frequencies, my + u,. Some numerical conse=
quences of these results will be discussed in the next section. We first make a
few observations.

It will be noted that the static magnetic field plays a much more important

role in the results for propagation perpendicular to the magnetic field, as given
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by €77), (81), and (83) than in the results for propagation parallel to the
magnetic field as given by (65). Indeed, this {s exactly what one expects on
intuitive grounds.

It will be shown in the mext section that the results for the current
densities associated with the sum frequency, w, + uy, axe independent of electron
temperature. The current densities can be made temperature-dependent, however,
1f the frequencies are judiciously chosen.

One intuitively expects that some enhancement may be obtained if one chooses
the difference frequency equal to a characteristic frequency of the plasma. In
the case of perpendicular propagation it is obvious from the appearance of (77),
(81), and (83) (and the definitions given in Appendices III and V) that enhancement

can occur if we choose,

| SRS
0w, = 2w, (= 4 ) Ly )

o = ol 50158

In the case of parallel propagation, it is not possible to make the choices (84).

(84)

or

From the appearance of (65) (and the definitions listed in Appendix II) it appears
a priori that we may make the choice

W, - W, = V (85)
although the resonance structure of the equations is not so obvious in this case.
The numerical consequences of the choices (84) and (85) will be explored in the
next section.

The term “enhancement"”, as used in the above discussion, has a double

meaning. In the first place, we mean that the magnitudes of the current densities
are increased, and, secondly, that the magnitudes of the temperature-dependent

terms are increased relative to the temperature-independent terms.
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5.  NBERICAL CORSIDERATIONS

We have made certain remarks, at various places in this report, concerning
the temperature=-dependent terms in comparisom witk the temperature~independent
tems. These statements remain to be verified. In addition, we should demonstrate
that the current densities correspond to measurable currents. These topics will
be discussed in the present section.

Suppose, for illustrative purposes, that we consider a value of electron
density of n, = 1Pcu™® = 10**1w™®. Then the plasma frequency is

wf =178 ~ /07 Sec“/

We will take the earth's magnetic field to be 0.5 gauss, so that

~/

6
W = 8,82 x10 sec]

The first case to be considered will be that of parallel propagation. For

purposes of computing jz(") » a8 given by (65), we, take
7 <
L«)‘:wz::?)?‘/O Sec , (86)

The condition (86) is made for purposes of simplicity in calculations of
37, but will not be used in calculations of S'~). It will be seen below that
measured values of __f” cannot be used for determination of electron temperatures,
These calculations Are actually only made for purposes of orientatiom, so that
the use of (86) is not critical insofar as the results are concerned.

Por the calculations in this section we will use values for electron tempera~

tures and collision frequency appropriate for the F-layer {15],

T, =T, =2000°K
which corresponds to

B, = F‘L = 3,37 « /0.7 a7
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and y = 10

which corresponds to, f

%/:%Lz-—é’x(D, (88)

These choices of data insure that the plasma waves are only weakly damped.

We find, for the propagation vectors,

- - -
K\(.i) — 8,55 6% m
- i
K = 405 x5 m
- 2 ! (89)
K:) = 7.1 10
(3 -6 -1
‘:) —_— ,'65 x lo m P
It follows from (86) that,
(2/3) (3/2) | -6 |
. = K+« = 2,07 x10 wm, (90)
+ A ta !

We see that, for reasonable values of z in (65), the spatial damping of the
current density can be neglected.

It will be noted that we are assuming that the two electron temperatures are
equal. This is for purposes of simplicity in the present ca}culatimo The
expressions for the current densities are such che'n:" the tem;erature difference
will be measurable if we can show that the temperature is itself measurable.

With the above data, the temperature-dependent terms in (30) are of order 10°°
and are therefore completely negligible in comparison with unity. This justifies
the procedure of neglecting the temperature dependence of the propagation vectors
in the previous sections.

In order to calculate the current densities, it is necessary to specify the

amplitudes of the incident ficlds, These amplitudes cannot be specified

arbitrarily, however. There are two points to be considered. Pirstly, a
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perturbation method has been used to calculate the current demsities. Obviously,
then, the amplitudes cannot be chosen too large. It is not necessary, however,
to restrict the amplitudes to be sufficiently small so that the comndition for
linearization, as described by Platzman and Buchsbaum [29], is satisfied. The
theory developed herein is similar in spirit to the "fairly small amplitude"
theory of Sturrock [20,21], but the approach is different. Secondly, we want the
measured current densities to be representative of the ambient electrom density
and electron temperature. This is only true if the aﬁplitudes of the incident
fields are bounded in magnitude. From the work of Ginzburg and Gurevich [15,17]
it is known that the temperature is essentially unchanged if the incident fields
are small in comparison with a quantity, BP, called the plasma field. For the

F-layer, it has the approximate value [15,17],
R V
It will be noted from (65) that there are four types of polarizations which

contribute to the current densities: A xiyy, Ayhys Aphayx, and Aghy . For

definiteness, we will choose,
}

AlX = /47_? = /0.. V/m

(91)
A 1y = Aa x = O,
Inserting the above data into (65), we find
* (+) i (32)

il A m
j-% = /0 P /m 2
which i{s independent of temperature. If & current detector of fairly large size
(equivalent crose=sectional area v 1 nf’) is used, then (92) may be measurable if

the proper bandwidth is chosen.
The order of magnitude of the result (92) does not change if different

polarizations than (91) are chosen (for given field magnitudes). The situation

42



can be somewhat improved if the field stréngths are increased, We cannot proceed
too far in this direction, however, because of the limitation discussed above.
Perhaps an order of magnitude increase over (92) can be realized.

In order to calculate jz(‘) we must make a choice for the difference frequency,
W < W. One of the basic ideas behind the investigation being described in this
report is the possibility that the current density may be enhanced if the
difference frequency is chosen equal to one of the characteristic frequencies of
the plasma. It is evident from (65) and Appendix IX that the only possibility

of obtaining a resonance effect in the case of parallel propagation is to choose,

z2_ =] (93)

e

i.e.,
W — )y = Y,
In the following calculation we will suppose that w, again has the value (86),
but that w, is determined from (93). Following the same procedure as in the

calculation of jz("’ , we obtain from (65),

‘ (') A - 16
= am %
Por current detectors of reasonable size the current obtained from (94) is too

small to be measured,

By comparing (92) and (94) we see that

(=) r(‘*)
;L% L L }% )

Thus, the choice (93) for the differemce frequency does not reveal a resonance

(95)

effect as one might suspect a priori from the appearance of the quantities defined
in Appendix II. The physical reason for this result i{s that the collision
frequency is not a true resonance frequency in the same sense as the cyclotron
and plasma frequencies., It will be shown below that resonance effects do ocecur

for the case of perpendicular propagation.
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Using the same data as in the derivation of (89), we obtain for the real

parts of the propagation vectors for the case of perpendicular propagation,

) - =

K., = 807 x10 nm (96)
- |

K\(:L) = [,0L /01 m 7

K. = 7.8 x 16" m (%8)
where we have set, for definiteness, T, = Ty. We note that K,‘” is much larger
than K,{1? and R.{3)., This 1s a direct consequence of the fact, previously moted
in Section 3, that K?! is strongly dependent upon temperature, whereas K (1)
and K53 are not (see below). |

The phase velocity corresponding to (97) is

5 -1
D _ o 94 5107 m sed

) J——

This result is of the same order of magnitude as the thermal velocity and, therefore,
mode 2 will be strongly affected by Landau=type damping. This is the justification
for neglecting this mode in calculating the current densities. It is easily
verified that the phase velocities corresponding to (96) and (98) are greater than
the velocity of light i{n vacusm. Therefore, these modes are not damped by this
mechanisn,

It is easily verified,using the same data as before, that g ‘) and g (3 are
temperature-independent, the temperature terms being of order 107®,

. Use of the same data leads to the result,

(43) (" ) (3,0) _ W “)
K-h', = KI/.', + K;_L = K’b: - K,/: + I<‘L,<',
~6 ~1

= 4,25 x 10 m.,



It follows from (77) that the spatial damping is small for the z=component of
current density, as in the case of parallel propagation. The remaining components
will be discussed later.

Taking, for definitenmess, the polarizations of the external fields to be
-1

A’% = A,L? = [0 V/m

(99
ij - A?—‘i - O
and using the same data as before, we find from (77):
. ) -1
-~ am 100"
1., = 10 % 1 {

which i{s independent of temperature., As in the case of (92), this result
corresponds to currents which may be measurable, if the size of the current
detector and the bandwidth are properly chosen,

In order to calculate jz") » we again must make a choice for the difference
frequency. In the present case it is advantageous, as can be seen from (77) and

Appendix III, to pick

1

———

/ (101)

1

i.e.,
instead of (93), vhich was used in the case of parallel propagation. Using (101)

and the previous data, we find,

j:(_)_’-:v /0—” A_m%,," (102)
E>

It will be noted that this result is an order of magnitude greater than (100), and
of the same order of magnitude as (92). By using the same argument as before, we
conclude that (102) should be measurable under proper experimental conditions.

This result is, however, temperature-dependent, in contradistinction to the cases

considered previously.




It will be observed that (102) does not represent much of an enhancement
ovef (100). This situation is not what one usually encounters in a resonance
effect. The reason that the enhancement is so low is that, although the resomance
denominator does become small in the case of (102) (it is down by a factor 10P
from the calculation of (100)), the mmerator also becomes small, so that the
resonant character of the phenomenon is masked. Actually, the resonant terms
give the major contribution to the quantities defined in Appendix IIX, so that the
increase in magnitude in the current density between (100) and (102) is indeed the
result of a resonance effect.,

The current densities jx(""’ and jy(” can be calculated in a similar way by
use of the same data from (8l) and (83), respectively. It is found that these
current densities are enhanced by several orders of magnitude if the choices (84)
are made,

For example, if we put

Y. = (103)

and use the previous data in (81) and Appendix V, we obtain,

} = /0 /r\
X
which is seen to be three=to=four orders of magnitude greater than the previous
results, The current corresponding to (104) should easily be measurable under
proper experimental conditions.

Similar results are obtained if one puts (103) into (83) or

Y = s ! (105)

into either (81) and {83).

The result (104), and its analogues just referred to, is strongly temperature—

dependent. This is in contradistinction to the results obtained previously, for

which there was only a slight ({.e., barely measurable) temperature dependence.

The results (104) and its analogs are a measure of TL,Abut not of Ty.
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6.  CONCLUDING REMARKS

We have calculated the contributions to the current densities associated with
the sum and difference frequencies of the external fields. The technique used in
order to perform the calculations was a perturbation technique. Arguments were
given to indicate that this method should be valid for the present problem. The
results verify a posteriori that this argument is correct, since the current
densities obtained cofreapond to very small currents.

It has been shown that i", » the contribution to the current density
associated with the sum frequency, u, +u,, is independent of temperature and,
therefore, provides a measure of the electron density. On the other hand, :1("’ .
the contribution associated with the difference frequency, @ = uy, can be made
temper?ture-dependent if the difference frequency 1is chosen properly.

Calculations were carried out for two situations, propagation parallel and
perpendicular to the static magnetic field. The general case of propagation at
an arbitrary angle with respect to the magnetic field can be done; the calculations
just become much more tedious. This extension of the method is reserved for
future work., It was felt that the two limiting cases considered herein would be
sufficient to determine whether or not the diagnostic method being proposed is
feagsible.

In the case of parallel propagation, the only non=vanishing component of
current density is that parallel to the magnetic field and the direction of
propagation. It was shown in Section 5 that the current density corresponding
to the sum frequency, w;, + u, has numerical values near the borderline of
measurability, for proper experimental conditions, and is independent of electron
temperature. A calculation of the current density corresponding to the difference

frequency, w, < uy, was carried out by setting

u), — L\)z = WV, (106)
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It was found that this current density is too small, by several orders of
magnitude, to be measurable. It was pointed out that this situation occurs
(i.e., jz(") << jz“')) because the collision frequency 1s not a resonsnt frequency
of the plasma in the same sense as the cyclotron and plasma frequencies, so that
& resonant enhancement is not obtained.

In the case of perpendicular propagation, there are no vanishing components
of current demsity. Calculations carried out show that jz(:’ are both on the
borderline of measurability, for proper experimental conditions. The current

density, jz“" , was calculated by choosing the difference frequency as

29 (107)

w,—(/O (-

, =
It was found that jz"’) i3 an order of magnitude greater thanmn jz“’ + Thus,
although we take advantage of the condition of cyclotron resonance, the enhancement
is much less than one would expect. It was pointed out that this situation arises
because the numerator of the expression for jz(") becomes small along with the

L3

denominator so that the enhancement is reduced.

A calculation was carried ocut for jx(" by again choosing the éifference
frequency from (107). It was found that the resulting current density correspoands
to currents, under suitable conditions, wvhich are easily measurable. These
currents are strongly temperature-dependent, in contradistinction to the previous

cases considered in which the temperature dependence was very slight. It was

also pointed out that similar results are obtained for j“" by choosing,
W= W, = AW (108)

and for jy("’ by choosing either (107) or (108).
The conclusions reached from the above considerations are that, if the case

of perpendicular propagation is considered, and the currents perpendicular to the
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direction of the static magnetic field are measured, then the electron temperature
can be determined. The currents along the magnetic field in both the cases of
wweﬁicular and parallel propagation were smaller by several orders of magnitude
and were only slightly temperature-dependent, even if they could be measured.

The electron temperature determined by measuring the currents corresponding
to the current densities, jx“) s jy"” is Ty, The temperature Ty cannot be
determined by this procedure. The reason for this is that we have considered a
special case, i.e., the propagation was perpendicular to the static magnetic
field. If the treatment is generalized to include other directions of propagation,
then Ty should also be capable of measurement. This aspect of the problem is
reserved for future work, We have only applied the results derived im this
report' to the P-region of the ionosphere. Generalization of these results to
different ionosphere regions will be considered in future work. It is expected
that the method advocated herein will also prove to be a useful diagnostic tool
in these situations,

The diagnostic method suggested herein should have some advantages over the
methods currently being employed.

The present technique allows the measurement of electron temperatures both
parallel and perpendicular to the static magnetic field, whereas the other
diagnostic (probe) methods do not comsider this possibility.

We have not included sheath effaects in the present analysis. The philosophy
has been to consider the present work as a preliminary investigation of a new
diagnostic technique rather than a £inal analysis for practical experimental
conditions, Sheath effects should not change the order of magnitude of the results.

If the experiments are performed on a rocket the value of we will change as
the rocket passes through the ionosphere. The conditioms (107) and (108) suggest
that a frequency sweep technique be employed. This procedure is feasible, since

the variation of w, with altitude is small.
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ARRENDIX I

In this appendix we discuss the evaluation of EW'. as given by (54).
The procedure of expanding the integrand of (54) in powers of E (= b" + 5“',
5 _5 5 s OF 5“ - 5_"’.) before integrating has been justified in
Section 4. We will now indicate the steps in the evaluation of (54) ueing t_his
procedure. '

Writing out Eq. (54) we have:
<o’

’[’ =9"’ fv,ﬁvf,lz é(ﬁ,w,?ﬂ? ’L)jc(_L,l{l)
’([—-—— [—- (d,, - A,;,)/u'h(f’-Z)+ (4:7"’4 b//>405(‘f'2)"' ’i/’/’;]
[v {(aN Vi b, cos(f*z)Jr(anw‘%bu)Sln(f’ 2)}

+ &L YA (413 t+ Y {Lm- cos (1-2) = Aui Slh(flzj)]

il

+ U5 (< 0t )

[T gb Yeos(e-0) + (ant Y by ) sin(p-0)
. —5,—': {K,_. (sin(p-n) - s in(r1-8)= ko (ersce-t)—eos(r-2-3))f
FARCEITSE osur—m) f (e ba)sin(P275) ]
+ e V(drs F U bS costp1-5)= b sin(p-1p- S)j)}

A NI

', VY
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‘f’("" ){(411 'ﬂbﬂ)cos(fz 5).;(412-“/6,,)5”1(( 7- 5)\}-

+ % v (b cos(f'z'j’) — by s/in(p-2-))

"

_ oy (Al b f b cos(rr-8) = 4 sin(p-2-9)]) ]

‘--:\;_ Z (d” (/] bll)‘sl“(f Z)+(A'L+” ”)COS(‘{' Z)‘ a(]
-

‘{Kf' V, cos(pep) 4 Kia V, sin(f=1) 4 K15 ¥ — @2 ]

‘ {m [(aZ/=y by Yeos(e-2-8) + (a5 + b Ysin(p-7-5)]
+ 8y (aly vy gé: cos(p-1-5) = b s (f-z—j)})}

e ¥y

n"

+ id"?:* (b“’coj(f }Z,)"é 5'”(? 2))}
,__Kﬂ 5 [(a '%E:;)COS(f"Z’j)
+ (a5t bl )sin(p-2-8) ]

8 (e o {6 o i)
1"

L §- b, cos(-0-5) + bl sin(r-1-5)]

— vy { (-, U b e 08 (p-g=8) + (Arat Y by )sin (00 5) §
]

" %(,_mv >( ZA cos(f 7-$) é sm(f 7- S)}]:B

(1-1)

51



where we have used the definition of i',
« /

- <’ « / « __:C?;.
RUy = = (a5 +x'xb)e 557
Pa 4

and the definition of !,“. given by (38). 1In addition the following changes of
variable have been made
f /

The procedure for performing the integrations in (I-1) is the same as that

i

-..%

\
~N

discussed by, for example, Montgomery and Tidman [27] in the case of the linearized
theory. That is, the g-integration is done first, then the T|= and §~integrations,

and finally the integrations over v; and vy.

We first consider the terms in (I-l) which are independent of _15_:

@) \ @2id)
[ :“"f"‘z— J{,QVﬂzQ 76('/4-;’4)

»~ 9_,_“)¢ =
{;'__ [-a, sin(r-1) +ai cos(r-1)]
L

¢ o ! ‘ ot !
[ (2 cos(r0) + ass sin (1)) + By i

. [(/' %)i&?; cos (f«2«§> + a.:,j $in (f"’é"f)}

m i
""5%‘{,4131 + o

1
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| ’ ‘
+— <% ’d;s:n(f»z) + 4:’; cos (1”"7)}

Vi ow,

\{‘CL ((az cos(r-7-5) + ayy s (V‘Z'SD

+ Crvyoal, }
&y

+ s [F2uy (221 cos(r-1-8) + x5 sin(p-2-5))

Vs <!
+ & (1= "0 ) a j (1-2)
69” ( 9/! 2 j

It s now easily shown that (I-2) vanishes, because (for a given term) either
the {ntegratiom over vy or o vanishes. The integrations are all trivial,

For the firat order terms, we considexr the specfal case in which propagation
is parallel to the static magnetic field, i.e., along the z=-axis. This is the
simplest case to consider, the remaining cases being evaluated in an analogous
manner, but more tediously.

For this case we find:

0 . 0 e
[ S e o £ () e 0
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" Z-;; (4;‘ sin(977) — a5 éos(f*z))

*[";_‘f' K:'o-%—)m cos (p-2) + &L sin(-1)

L g o] 245) ]

+ A K VH’Z, {A::: Sin(P=1) — 4], cos (7”2)}

wC—
fu (%'mcfr ) + a5 ST (£-2)) + S2 Vi 4as
e f'—(“)z*/«)’)
..f,gg o S

/

[ Ay cos(e-0) + 2% sin(e-0)} X
Imi (g -g) + %’.-,}

Al cos(e1-5) + a4l sin(e-0-5)]

- .a.; (5 cos(e-2) + are sin (7-0)

F0- 1) (4 cos(r2-5) + a3y sin (p=2-5)

..._g_"[/_La,ls} Foee

I



’ & . X <! £ w
<Y (aysin(g-0)— an cos(r-2)) (Ke + K 2

|
+L/L o

’ {ZL (A'i" COSCf'—ZﬂQ +d:;_5;'n(¢-z_5)> +%— Vv &l:;}
4;3 l-( (/ 9” 9” ,)

A7

h (du COS(’f’Z'.f) + Aaz 5"“(TI‘Z—S)>

,5; 4;(3 K: § Zlﬁ (4:[, ;;05(7—2'5) +4A,q sin (?0’2"5))

<
;

Y

. /
+ Gr v d-23}

"
([

<a, cos (¢-1) T ot,of,, st'n (¢~ Z}/

'f‘ (,0,
{4/ v, (A.L, cos(p-)- 3) + 2. 7,5’”(( Z’j))
ﬁ(’“’%)ﬂiz}
'/il/ﬂ-}(o(’ ———._[ (6(,( 5/)1(? L)——é(,a(zCOS (? Z))
w. *

| (;{i: COS(f’Z"SB -+ 6(7_7, sin (50'2"5>)

’ !
— vy (K +KS)

<
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x f(“:cos(?”’ﬂ + d,cj_ sSin ((("’L))
[0- 25 (a5 costrzo5 0 45 0 1-1-5)
L

Py
- LV, 4. |

(“// 5"’(7’ 1) — ap cos(g- 7’)>

/t

K_ 3 /
x[ ( y COS(?Z S)«i- az.zb/n(f Vs j))‘f'fé;“ " ﬂ-a_BJ

v, (47 ws(m-sw Aty sin(r-7-5))

m_
&y

O -
+,-é;(l 69” 413_]}3 } (1-3)

We will illustrate the evaluation of the integrations in (I-3) by calculating

X
daL’

the z-component. Integrating (I-3) over o gives:

. (w+~ »)
viv Av. Ay, F (V 1 ¢
o e A oc y // 7 <

{(4“ A'z,‘L d/?, 47_/ > ( éﬂ )’{' KII
..,l—d...,Kl 7’ (/‘(,, 5(72 411 ‘41”)
W1 Lr)
«—fﬂg’ g [’_,_ (g2,) (5]

. o =t Kot p
Z(ﬂ{/ 6{7_, d'?/ 411 )Coég"‘(dl‘ A’ll-’dl'l’ dl[ )SI”S\Z

+ e
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« 2

-V n

J%ELO—.M )z(“'l 11/‘*'07:7, dzz)c”sg
{

__(d,,ydﬁ—*ﬂn, ,;{1,)Sln§}
+/°V’ (k'+ K/)ZM al v alaL)sins

'/'(d// 417/ _-dlz dz(ll> 605‘?3

‘ /
Lo X A &
"’—w—" 13 Az /< S, *ﬁ%/
<
X <
——'{LK’, V.L/l{(dll 47./'*4/7- 422)4055
5y [

«
"(4/;(447,/’4!?, Aﬂ ) S’”S}

o Vi (K2+ 7'5)(" T.ﬁ»)

5 h
Z(“;(dz/‘f’d/z ﬂzz )Cos.f — C“— 41_‘1« 417, dzl / Sj

o < ‘n §
==V, (KZ'F)‘?’S))A& " dzl‘*'ﬂ' 417')5/ -
g '/'(4// 0(17, ﬂ/z %U, COS S \g
sy () 2 (- L) o
wc 1] 2 9” 6’,, 2.

4

<! A X1 ’
’Z)/:V’ 9,/ ) (4'/ 6{1,4’&?/;&(21)5'“_?
! =4 !
4—(67;(&(17, — 4, Ay )coﬁj} } (T-4)

The remaining integrations can all be performed simultaneously and are all

trivial, The result is (64). The integrations for the remaining cases are

performed in an analogous fashion.
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APPENDIX II

In this appendix we give the definitions of the quantities avpearing in

(65).
‘* G) _ EF) L) () )
+ KL = K*Y + A l(‘!/: Ki”‘ K!/: real
% 4 4) &) )
- ( ( K <ol
Kj = ’jy + < /’/', Jr )« real
¢, () ), (<7) (1) (4))
“5*({(’ ikz}) -:; hi?‘ ’7“/(’/'1/: /IJP‘ /fA— real
+

(~,; ()4 '))) i (5:11/))1

(n; : [+ 3/3,, (~r7) (HM}) J(/ %+
ot /+2 _74,17/% ,;) (uj}]

+
B(L’j)':'. X [ , - Bf {/)( '“ 7 (1-2)

TS 5 [(/(,7) ("7)) ]}j
- T+
) (Qu,;))i4L (Sf%i))’t
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. . <)
C( /): c_oS(KCr})z’ w+f)[(A'x ’42X+’4'j 1}) Q

J)
+ (A g = A Aug) S
- 5"”(’(;?')‘3—"‘ (,oif) [(Alj /4:.)( - AIX Aaﬁ) Q(ﬁg)
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W, o (|- {1+ %+3 | 9
+ 2. f” [Kﬂ. (H\/,,)(I ‘Zj) + XZy (K+\- 2, t K; \’*Yl))]

awtY, 0 2 A '%3’) +42; ]

59



(2)
3
/_ Kar + 21%[( @"Z‘,*Kn (' 7')(/" ’2:)

= o (125 ~ 2k (7)) ]
202 Y, (V-2 + 42 ]

) . , 3) a)
4 = [Kz(r)%y (1+ £ £ () + kit (1-4) % 24 Ko (177)]
ww, (1-%%) (1+23)

(3)

| _ 2 %[Ktr U-%)(1-25)+ 224 (K,,. %, + Ky (l——Y;))J
| netY, (1-0)) (H21)
g = K::)(I-—\/z) + 24 K(3)(!-7,,)+K,k:)%7.zl 3 ﬁ “%:)3)
W, 1, (1—y1)(/+ 27)
A G K 1) = 225 Ky 1]
9«»_‘7'- (V) [1-25) + 42+ |

; ) '
- [(/+M (&2(/-7’») + Ky Za (1-% %(’—7;»)
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~ K (Z2U~-%)+222) ] |
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) ) @) ) ” A
| " Koy (147,) # %i(’%; (#0)+ Kar 2, (143 L2075 »l

é
wy Wy (1-%,%) (1+27)
'Z)
-+ 9\ %’ 4 .E——" /<(3

l + :

207 Y, (1~ mwa 142 ]

: [(K (I+‘/.)+ Kﬂi (H zf’(’“ Y, m(' Y1)
“/<9.\~ (i%i (”7,)4'1%!)]
(")/ We ()"Y}‘L)O")II) (}- %;)

re—

?.

+ %, %-f— /5 (k;tv w/+K+ (H'Y»

WYy (-0 [1-20) 5+ 42 ]

The quantities in (65) with the subscripts "+" are obtained from the

quantities given above with the subscript "+" by means of the transformation,

In the course of deriving (65) we made some assumptions in the interest

of simplicity. These assumptions are,

A 2

which is a consequence of (3), and enabled us to neglect a considerable

number of terms.
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Assumptions (II-l) are satisfied in the FPeregion of the ionosphere which
was the situation considered numerically in Section 5. For lower regions of
the ionosphere, where (II-l) is not satisfied, it is a simple matter to

derive modified forms of the quantities defined in this appendix.
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ARERIX I

In this sppendix we give the definitions of the quantities appearing im

an.
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In the derivation of the quantities given inm this appendix use has again
been made of (II-1). As discussed at the end of Appendix II , it is a simple

matter to derive the corresponding expressions for the genera} case,
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APPENDIX IV

In this appendix we list the coefficients yi; appearing in (79) and (80)
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In this appendix we give the definitions of the quantities appearing in

(81) and (83).

l APPENDIX V

|

|

\

L The definitions of the propagation vectors and refractive indices are the

| sane as defined in Appendices II and III.
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In the quantities defined above  assumes the values 1 and 3. TFor brevity

we have also used the definition,
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TN (- - ar (7 e )]
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We have again used assumption (IXI-l) in the derivation of the quantities
given in this appendix. As mentioned at the end of Appendix II, it is a simple

matter to derive expressions for the general case.
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